Quantcast
Channel: Learn CBSE
Viewing all articles
Browse latest Browse all 9061

Inverse Trigonometric Functions

$
0
0

Inverse Trigonometric Functions (Inverse Trig Functions)

Inverse trig functions: sin-1x , cos-1x , tan-1x etc. denote angles or real numbers whose sine is x , whose cosine is x and whose tangent is x, provided that the answers given are numerically smallest available. These are also written as arc sinx , arc cosx etc . If there are two angles one positive & the other negative having same numerical value, then positive angle should be taken.

Principal Values And Domains Of Inverse Circular Functions

  • y = sin-1x where −1 ≤ x ≤ 1 ; -\frac{\pi}{2} \leq y \leq \frac{\pi}{2}  and sin y = x.
  • y = cos-1x where −1 ≤ x ≤ 1 ; 0 ≤ y ≤ π and cos y = x.
  • y = tan-1x where x ∈ R ; -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} and tan y = x.
  • y = cosec-1x where x ≤ − 1 or x ≥ 1 ; -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} , y ≠ 0 and cosec y = x
  • y = sec-1x where x ≤ −1 or x ≥ 1 ; 0 ≤ y ≤ π ; \mathrm{y} \neq \frac{\pi}{2} and sec y = x.
  • y = cot-1x where x ∈ R , 0 < y < π and cot y = x .
    Note:
    (i) 1st quadrant is common to all the inverse functions.
    (ii) 3rd quadrant is not used in inverse functions.
    (iii) 4th quadrant is used in the Clockwise Direction i.e. -\frac{\pi}{2} \leq y \leq 0.

Properties Of Inverse Circular Functions | Inverse Trigonometric Functions

  • Property 1:
    • sin (sin-1x) = x , −1 ≤ x ≤ 1
    • cos (cos-1x) = x , −1 ≤ x ≤ 1
    • tan (tan-1 x) = x , x ∈ R
    • sin-1(sin x) = x , -\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
    • cos-1(cos x) = x ; 0 ≤ x ≤ π
    • tan-1(tan x) = x ; -\frac{\pi}{2}<x<\frac{\pi}{2}
  • Property 2:
    • cosec-1x = sin-1\frac {1}{x} ; x ≤ −1 , x ≥ 1
    • sec-1x = cos-1\frac {1}{x}  ; x ≤ −1 , x ≥ 1
    • cot-1x = tan-1\frac {1}{x} ; x > 0 = π + tan-1\frac {1}{x} ; x < 0
  • Property 3:
    • sin-1(−x) = − sin-1x , −1 ≤ x ≤ 1
    • tan-1(−x) = − tan-1x , x ∈ R
    • cos-1(−x) = π − cos-1x , −1 ≤ x ≤ 1
    • cot-1(−x) = π − cot-1x , x ∈ R
  • Property 4:
    • sin-1x + cos-1x = \frac{\pi}{2} −1 ≤ x ≤ 1
    • tan-1x + cot-1x = \frac {\pi}{2}  x ∈ R
    • cosec-1x + sec-1x = \frac {\pi}{2} |x|≥1
  • Property 5:
    • \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y} where x > 0 , y > 0 & xy < 1
      =\pi+\tan ^{-1} \frac{x+y}{1-x y} where x > 0 , y > 0 & xy > 1
    • \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y} where x > 0 , y > 0
  • Property 6:
    • \sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left[x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right] where x ≥ 0 ,y≥0 & (x2+y2)≤1
      Note: x2+y2≤ 1 ⇒ 0 ≤ sin-1x + sin-1y ≤ \frac {\pi}{2}
    • \sin ^{-1} x+\sin ^{-1} y=\pi-\sin ^{-1}\left[x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right]  where x≥0,y ≥ 0 & x2+y2>1
      Note: x+ y2 >1 ⇒ \frac {\pi}{2} < sin-1x + sin-1y < π
    • \sin ^{-1} x-\sin ^{-1} y=\sin ^{-1}\left[x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}}\right]  where x > 0 , y > 0
    • \cos ^{-1} x \pm \cos ^{-1} y=\cos ^{-1} \left[x y \mp \sqrt{1-x^{2}} \sqrt{1-y^{2}} \right]  where x ≥ 0 , y ≥ 0
  • Property 7:
    If tan-1x + tan-1y + tan-1z = \tan ^{-1}\left[\frac{x+y+z-x y z}{1-x y-y z-z x}\right]
    Note:
    (i) If tan-1x + tan-1y + tan-1z = π then x + y + z = xyz
    (ii) If tan-1x + tan-1y + tan-1z = \frac {\pi}{2} then xy + yz + zx = 1
  • Property 8:
    2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}=\tan ^{-1} \frac{2 x}{1-x^{2}}

    Note very carefully that:
    \sin ^{-1} \frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}=\left[ \begin{array}{ll}{2 \tan ^{-1} \mathrm{x}} & {\text { if }|\mathrm{x}| \leq 1} \\ {\pi-2 \tan ^{-1} \mathrm{x}} & {\text { if } \quad \mathrm{x}>1} \\ {-\left(\pi+2 \tan ^{-1} \mathrm{x}\right)} & {\text { if } \quad \mathrm{x}<-1}\end{array}\right.
    \cos ^{-1} \frac{1-x^{2}}{1+x^{2}}=\left[ \begin{array}{ll}{2 \tan ^{-1} x} & {\text { if } x \geq 0} \\ {-2 \tan ^{-1} x} & {\text { if } x<0}\end{array}\right.
    \tan ^{-1} \frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}=\left[ \begin{array}{ll}{2 \tan ^{-1} \mathrm{x}} & {\text { if } \quad|\mathrm{x}|<1} \\ {\pi+2 \tan ^{-1} \mathrm{x}} & {\text { if } \quad \mathrm{x}<-1} \\ {-\left(\pi-2 \tan ^{-1} \mathrm{x}\right)} & {\text { if } \quad \mathrm{x}>1}\end{array}\right.

    Remember That:
    (i) sin-1x + sin-1y + sin-1z = \frac {3\pi}{2}  ⇒ x = y = z = 1
    (ii) cos-1x + cos-1y + cos-1z = 3π ⇒ x = y = z = −1
    (iii) tan-11 + tan-12 + tan-13 = π and tan-11 + tan-1\frac {1}{2} + tan-1\frac {1}{3} = \frac {\pi}{2}

Inverse Trigonometric Functions | Some Useful Graphs

1. y = sin-1x , |x| ≤ 1 , y ∈ \left[-\frac {\pi}{2}, \frac {\pi}{2}\right]
inverse trig functions

2. y = cos-1x , |x| ≤ 1 , y ∈ [0 , π]
inverse trig identities

3. y = tan-1x, x ∈ R , y ∈ \left(-\frac {\pi}{2}, \frac {\pi}{2}\right)
tan^-1(1)
4. y = cot-1x, x ∈ R, y ∈ (0 , π)
inverse trigonometric functions
5. y = sec-1x, |x| ≥ 1, y ∈ \left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]
trigonometric properties
6. y = cosec-1x, |x| ≥ 1, y ∈ \left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]
inverse trig function
7. (a) y = sin-1(sin x) , x ∈ R , y ∈ \left[-\frac {\pi}{2}, \frac {\pi}{2}\right]
Periodic with period 2 π
trig inverse
7.(b) y = sin (sin-1x) ,
= x, x ∈ [− 1 , 1] , y ∈ [− 1 , 1] , y is  a periodic
properties of trig functions

8. (a) y = cos-1(cos x), x ∈ R, y ∈ [0, π],
= x periodic with period 2 π
jee maths formulas 8a
8. (b) y = cos (cos-1x),
= x,  x ∈ [− 1 , 1] , y ∈ [− 1 , 1], y is a periodic
trigonometric inverse
9. (a) y = tan (tan-1x) , x ∈ R , y ∈ R , y is a periodic
= x
trig inverse functions
9. (b)y = tan-1(tan x) ,
= x
x \in R-\left\{(2 n-1) \frac{\pi}{2} n \in I\right\}, y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), periodic with period π
trig inverse functions 1
10. (a) y = cot-1(cot x),
= x
x ∈ R − { nπ} , y ∈ (0 , π) , periodic with π
jee maths formulas 10a

10. (b) y = cot (cot-1x) ,
= x
x ∈ R , ∈ R , y is a periodic
inverse trigonometric function

11. (a) y = cosec-1(cosec x),
= x
x ε R − { nπ , n ε I }, y ∈ \left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]
y is periodic with period 2 π
properties of inverse functions

11. (b) y = cosec (cosec-1x) ,
= x
|x| ≥ 1, |y| ≥ 1, y is aperiodic
properties of trigonometric functions

12. (a) y = sec −1 (sec x) ,
= x
y is periodic with period 2π ;
x \in \mathrm{R}-\left\{(2 \mathrm{n}-1) \frac{\pi}{2} \mathrm{n} \in \mathrm{I}\right\} \quad \mathrm{y} \in\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]
jee maths formulas 12a

12. (b) y = sec (sec −1 x), |x≥ 1 ; |y| ≥ 1], y is a periodic
jee maths formulas 12b

The post Inverse Trigonometric Functions appeared first on Learn CBSE.


Viewing all articles
Browse latest Browse all 9061

Trending Articles