Quantcast
Channel: Learn CBSE
Viewing all articles
Browse latest Browse all 9061

NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

$
0
0

NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Get Free NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 PDF in Hindi and English Medium. Sets Class 12 Maths NCERT Solutions are extremely helpful while doing your homework. Determinants Exercise 4.5 Class 12 Maths NCERT Solutions were prepared by Experienced LearnCBSE.in Teachers. Detailed answers of all the questions in Chapter 4 Class 12 Determinants Ex 4.5 provided in NCERT Textbook.

Free download NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 PDF in Hindi Medium as well as in English Medium for CBSE, Uttarakhand, Bihar, MP Board, Gujarat Board, BIE, Intermediate and UP Board students, who are using NCERT Books based on updated CBSE Syllabus for the session 2019-20.

The topics and sub-topics included in the Determinants chapter are the following:

Section NameTopic Name
4Determinants
4.1Introduction
4.2Determinant
4.3Properties of Determinants
4.4Area of a Triangle
4.5Adjoint and Inverse of a Matrix
4.6Applications of Determinants and Matrices
4.7Summary

NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Find the adjoint of each of the matrices in Questions 1 and 2.

Ex 4.5 Class 12 Maths Question 1.
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}=A(say)
Solution:
Let Cij be cofactor of aij in A. Then, the cofactors of elements of A are given by
C11 = (-1)1+1 (4) = 4; C12 = (-1)1+2 (3) = -3
C21 = (-1)2+1 (2)= – 2; C22 = (-1)2+2 (1) = -1
Adj A = \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}
= \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}

Ex 4.5 Class 12 Maths Question 2.
\left[ \begin{matrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{matrix} \right] =A(say)
Solution:
{ A }_{ 11 }={ (-1) }^{ 1+1 }M_{ 11 }=\begin{vmatrix} 3 & 5 \\ 0 & 1 \end{vmatrix}=3
Similarly,
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 2

Verify A (adjA) = (adjA) •A = |A| I in Qs. 3 and 4.
Ex 4.5 Class 12 Maths Question 3.
\begin{bmatrix} 2 & 3 \\ -4 & 6 \end{bmatrix}=A(say)
Solution:
|A| = 24
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 3

Ex 4.5 Class 12 Maths Question 4.
\left[ \begin{matrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{matrix} \right] =A(say)
Solution:
A11 = 0, A12 = – 11, A13 = 0,
A21 = – 3, A22 = 1, A23 = 1, A31 = – 2
A32 = 8, A33 = – 3
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 4

Find the inverse of each of the matrices (if it exists) given in Questions 5 to 11:

Ex 4.5 Class 12 Maths Question 5.
\begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}=A(say)
Solution:
\left| A \right| =\begin{vmatrix} 2 & -2 \\ 4 & 3 \end{vmatrix}=6+8=14\neq 0
So, A is a non-singular matrix and therefore it is invertible. Let cij be cofactor of aij in A. Then, the cofactors of elements of A are given by
vedantu class 12 maths Chapter 4 Determinants 5

Ex 4.5 Class 12 Maths Question 6.
\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}=A(say)
Solution:
\left| A \right| =\begin{vmatrix} -1 & 5 \\ -3 & 2 \end{vmatrix}=-2+15=13\neq 0
So, A is a non-singular matrix and therefore it is invertible. Let cij be cofactor of aij in A. Then, the cofactors of elements of A are given by
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 6

Ex 4.5 Class 12 Maths Question 7.
\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{matrix} \right] =A
Solution:
|A| = 10
\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{matrix} \right] =A
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 7

Ex 4.5 Class 12 Maths Question 8.
\left[ \begin{matrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{matrix} \right] =A
Solution:
\left| A \right| =\left| \begin{matrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{matrix} \right| =1\left| \begin{matrix} 3 & 0 \\ 2 & -1 \end{matrix} \right| =-3\neq 0
So, A is a non-singular matrix and therefore it is invertible. Let cij be cofactor of aij in A. Then, the cofactors of elements of A are given by
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 8

Ex 4.5 Class 12 Maths Question 9.
\left[ \begin{matrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{matrix} \right] =A
Solution:
|A| = \left[ \begin{matrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{matrix} \right] =A
= 2(-1-0)-1(4-0)+3(8-3)
So, A is non-singular matrix and therefore, it is invertible.
vedantu class 12 maths Chapter 4 Determinants 9

Ex 4.5 Class 12 Maths Question 10.
\left[ \begin{matrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{matrix} \right] =A
Solution:
|A| = \left[ \begin{matrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{matrix} \right] =A
= 1(8-6)+1(0+9)+2(0-6)
= 2+9-12
= -1≠0
∴A is invertible and
{ A }^{ -1 }=\frac { Adj\quad A }{ |A| }
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 10

Ex 4.5 Class 12 Maths Question 11.
\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & cos\alpha & sin\alpha \\ 0 & sin\alpha & -cos\alpha \end{matrix} \right]
Solution:
A = \left[ \begin{matrix} 1 & 0 & 0 \\ 0 & cos\alpha & sin\alpha \\ 0 & sin\alpha & -cos\alpha \end{matrix} \right]
adj A = \left[ \begin{matrix} -1 & 0 & 0 \\ 0 & -cos\alpha & -sin\alpha \\ 0 & -sin\alpha & cos\alpha \end{matrix} \right]
First find |A| = -cos²α-sin²α
=-1≠0
vedantu class 12 maths Chapter 4 Determinants 11

Ex 4.5 Class 12 Maths Question 12.
Let A=\begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix},B=\begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}, verify that (AB)-1 = B-1A-1
Solution:
Here |A| = A=\begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}
= 15-14
= 1≠0
Adj A=\begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 12
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 12.1

Ex 4.5 Class 12 Maths Question 13.
If A=\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} show that A² – 5A + 7I = 0,hence find A-1
Solution:
A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}
A² = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 13

Ex 4.5 Class 12 Maths Question 14.
For the matrix A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} find file numbers a and b such that A²+aA+bI²=0. Hence, find A-1.
Solution:
A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}
A²+aA+bI²=0
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 14

Ex 4.5 Class 12 Maths Question 15.
For the matrix A=\left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{matrix} \right]  Show that A³-6A²+5A+11I3=0.Hence find A-1
Solution:
A² =  \left[ \begin{matrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 15
vedantu class 12 maths Chapter 4 Determinants 15.1

Ex 4.5 Class 12 Maths Question 16.
If A=\left[ \begin{matrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{matrix} \right] show that A³-6A²+9A-4I=0 and hence, find A-1
Solution:
We have
A=\left[ \begin{matrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 16
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 16.1

Ex 4.5 Class 12 Maths Question 17.
Let A be a non-singular square matrix of order 3×3. Then | Adj A | is equal to:
(a) | A |
(b) | A |²
(c) | A |³
(d) 3 | A |
Solution:
Let A = \left[ \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 17
NCERT Solutions for Class 12 Maths Chapter 4 Determinants 17.1
Dividing by | A |, |Adj. A| = | A |²
Hence, Part (b) is the correct answer.

Ex 4.5 Class 12 Maths Question 18.
If A is an invertible matrix of order 2, then det. (A-1) is equal to:
(a) det. (A)
(b) \\ \frac { 1 }{ det.(A) }
(c) 1
(d) 0
Solution:
|A|≠0
=> A-1 exists => AA-1 = I
|AA-1| = |I| = I
=> |A||A-1| = I
|{ A }^{ -1 }|=\frac { 1 }{ |A| }
Hence option (b) is correct.

NCERT Solutions for Class 12 Maths Chapter 4 Determinants Hindi Medium Ex 4.5

NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.5 Determinants
NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.5 Determinants in English medium PDF
NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.5 English Medium
NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.5 in PDF for 2018-19
Class 12 Maths Chapter 4 Exercise 4.5 in English
Class 12 Maths Chapter 4 Exercise 4.5 inverse of matrix
Class 12 Maths Chapter 4 Exercise 4.5 Inverse and adjoint of matrix
NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.5 in Hindi Medium
12 Maths exercise 4.5 in Hindi Medium
12 Maths exercise 4.5 in Hindi Medium for CBSE and UP Board
12 Maths Chapter 4 exercise 4.5 in Hindi Medium
12 Maths chapter 4 exercise 4.5 in Hindi Medium for 2018-2019
12 Maths chapter 4 exercise 4.5 in Hindi Medium updated for 2018-2019
12 Maths Exercise 4.5 in Hindi
12 Maths Exercise 4.5 in Hindi PDF
NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.5 Determinants

NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.5 Determinants in English medium PDF
NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.5 Determinants for 2018-19
Chapter 4 Exercise 4.5 Determinants in Hindi Medium PDF

More Resources for NCERT Solutions Class 12:

The post NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 appeared first on Learn CBSE.


Viewing all articles
Browse latest Browse all 9061

Trending Articles