Quantcast
Channel: Learn CBSE
Viewing all articles
Browse latest Browse all 10164

Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8

$
0
0

Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8

Extra Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry. According to new CBSE Exam Pattern, MCQ Questions for Class 10 Maths Carries 20 Marks.

You can also download Class 10 Maths to help you to revise complete syllabus and score more marks in your examinations.

Introduction to Trigonometry Class 10 Extra Questions Very Short Answer Type

Question 1.
From the given figure, find the value of x:
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 1
Answer:
In the given fig., only one side is known which is hypotenuse and side to be evaluated is BC which is perpendicular with reference to given angle ZA = 30°.
∴ sin 30° = \(\frac{x}{15}\) ⇒ x = 15 sin 30°
x = 15 × \(\frac{1}{2}\) = 7\(\frac{1}{2}\) cm

Question 2.
If tan A = cot B, prove that A + B = 90°.
Answer:
∵ tan A = cot B
∴ tan A = tan (90°-B)
⇒ A = 90°-B
⇒ A + B = 90°. [Hence proved]

Question 3.
Evaluate cos 60° sin 30° + sin 60° cos 30°. (AI CBSE 2010)
Answer:
We have: cos 60° . sin 30° + sin 60°. cos 30°
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 2

Question 4.
If cos A = \(\frac{2}{5}\), find the value of 4 + 4 tan2A [CBSE Sample Paper-2017]
Answer:
sec A = \(\frac{1}{\cos \mathrm{A}}=\frac{5}{2}\)
4 + 4 tan2 A = 4 (1 + tan2 A)
= 4 (sec2 A) = 4 \(\left(\frac{5}{2}\right)^2\) = 25

Question 5.
If 3x = sec θ and 9\(\left(x^2-\frac{1}{x^2}\right)\) = tan θ, then find \(\).
Answer:
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 3

Question 6.
What is the value of (cos2 67° – sin2 23°)?
Answer:
∵ 67° + 23° = 90°
∴ cos2 67° – sin2 23° = cos2 (90° – 23°) – sin223°
= sin2 23° – sin2 23°
= 0

Question 7.
Find the value of sin 38° – cos 52°? [CBSE 2016]
Answer:
sin 38° – cos 52°
= sin38° – cos (90° – 38°) [∵ cos (90° – θ = sin θ]
= sin 38° – sin 38°
= 0

Question 8.
If 7 sin2 θ + 3 cos2 θ = 4, then find the value of tan θ.
Answer:
7 sin2 θ + 3 cos2 θ = 4
Dividing both sides by cos2 θ
\(\frac{7 \sin ^2 \theta}{\cos ^2 \theta}\) + 3 = \(\frac{4}{\cos ^2 \theta}\)
7 tan2 θ + 3 = 4 sec2 θ
= 4(1 + tan2 θ)
⇒ 3 tan2 θ = 1
tan θ = \(\frac{1}{\sqrt{3}}\)

Question 9.
Write the value of \(\frac{5}{\cot ^2 \theta}-\frac{5}{\cos ^2 \theta}\)
Answer:
\(\frac{5}{\cot ^2 \theta}-\frac{5}{\cos ^2 \theta}\) = 5 tan2 θ – 5 sec2 θ
= 5(tan2 θ – sec2 θ)
= – 5(sec2 θ – tan2 θ)
= – 5(1)
= – 5

Question 10.
Given that tan θ = \(\frac{1}{\sqrt{3}}\) then find the value of \(\frac{{cosec}^2 \theta-\cot ^2 \theta}{{cosec}^2 \theta+\sec ^2 \theta}\).
Answer:
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 4

Question 11.
If tan A = cot (A + 10), find A. [CBSE Delhi 2016]
Answer:
tan A = cot (A + 10)
⇒ cot (90° – A) = cot (A + 10) [ ∵ cot (90 – θ) = tan θ]
⇒ 90° – A = A + 10
⇒ 90° – 10 = A + A
⇒ 80° = 2A
\(\frac{80^{\circ}}{2}\) = A
∴ A = 40°

Question 12.
Express sin 67° + cos 75° in terms of t-ratios of angles between 0° and 45°.
Answer:
∵ 67 = 90 – 23 and 75 = 90 – 15
∴ sin 67° + cos 75°
= sin (90° – 23°) + cos (90° – 15°)
= cos 23° + sin 15°.

Question 13.
Find the value of sin (60° + θ) – cos (30° – θ).
Answer:
Observe (60° + θ) = 90° – (30° – θ)
∴ sin (60°+ θ) – cos (30° – θ)
= sin {90° – (30° – θ)} – cos (30° – θ)
= cos (30° – θ) – cos (30° – θ)
= 0

Introduction to Trigonometry Class 10 Extra Questions Short Answer Type-1

Question 1.
Express cot 85° + cos 75° in terms of trigonometric ratio of angles between 0° and 45°.
Answer:
We have
cot 85° + cos 75°
= cot (90° – 5°) + cos (90° – 15°)
= tan 5° + sin 15°
[∵ cot (90° – 0) = tan θ
and cos (90° – θ) = sin θ]
which is the required result.

Question 2.
Write the simplest value of \(\frac{\cos ^2 \theta}{\sin \theta}\) + sin θ
Answer:
\(\frac{\cos ^2 \theta+\sin ^2 \theta}{\sin \theta}\) = \(\frac{1}{\sin \theta}\) = cosec θ

Question 3.
If sin 3θ = cos (θ – 6)° and 30 and (θ – 6)° are acute angles, find the value of θ.
Answer:
We have:
sin 30 = cos (θ – 6)°
= sin [90°- (θ – 6)°]
[∵ sin (90° – θ) = cos θ]
⇒ 3θ = 90° – (θ – 6)°
⇒ 3θ = 90 – θ + 6
⇒ 3θ + θ = 96
⇒ 4θ = 96
⇒ θ = \(\frac{96}{4}\) = 24
Thus θ = 24°.

Question 4.
Prove the following identity:
\(\left(1+\frac{1}{\tan ^2 A}\right)\left(1+\frac{1}{\cot ^2 A}\right)\) = \(\frac{1}{\cos ^2 A-\cos ^4 A}\) [CBSE 2016]
Answer:
As, 1 + cot2 A = cosec2 A
1 + tan2 A = sec2 A
sin2 A + cos2 A = 1
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 5
L.H.S = R.H.S.
Hence Proved.

Question 5.
If tan θ = cot (30° + θ), find the value of θ.
Answer:
We have:
tan θ = cot (30° + θ)
= tan [90° – (30° + θ)]
= tan [90° – 30°- θ]
= tan (60° – θ)
⇒ 0 = 60° – θ
⇒ θ + θ = 60°
⇒ 20 = 60°
⇒ θ = \(\frac{60^{\circ}}{2}\) = 30°
∴ θ = 30°.

Question 6.
If 3 cot A = 4, find the value of \(\frac{{cosec}^2 A+1}{{cosec}^2 A-1}\)
Answer:
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 6

Question 7.
Without using trigonometric tables, prove that \(\frac{\cos ^2 49^{\circ}+\cos ^2\left(90^{\circ}-49^{\circ}\right)}{\sin ^2 31^{\circ}+\sin ^2\left(90^{\circ}-31^{\circ}\right)}\) + 2 tan 35° tan 55° = 3.
Answer:
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 7

Question 8.
Prove that: \(\sqrt{\frac{\sec \theta-1}{\sec \theta+1}}+\sqrt{\frac{\sec \theta+1}{\sec \theta-1}}\) = 2 cosec θ
Answer:
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 8

Question 9.
Show that: tan 10° tan 15° tan 75° tan 80° = 1
Answer:
We have:
LHS = tan 10° tan 15° tan 75° tan 80°
= tan (90° – 80°) tan 15° tan (90° -15°) tan 80°
= cot 80° tan 15° cot 15° tan 80°
= (cot 80° × tan 80°) × (tan 15° × cot 15°)
= 1 × 1 = 1 = RHS

Question 10.
Evaluate cosec (65° + θ) – sec (25° – θ) – tan (55° – θ) + cot (35° + θ). [C.B.S.E. 2000]
Answer:
Here observe that:
(65° + θ) + (25° – θ) = 90°
⇒ 65° + θ = 90° – (25° – θ)
(55° – θ) + (35° + θ) = 90°
⇒ 35° + θ = 90° – (55° – θ)
∴ Given expression
cosec [9θ° – (25 – θ)] – sec (25° – θ) – tan (55° – θ) + cot [9θ° – (55° – θ)]
= sec (25° – θ) – sec (25° – θ) – tan (55° – θ) + tan (55° – θ)
[∵ cosec (9θ° – θ) = sec θ cot (9θ° – θ) = tan θ
= 0 – 0
= θ

Question 11.
Prove the following identities:
(i) (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ
(ii) (sin θ + sec θ)2 + (cos θ + cosec θ)2 = (1 + sec θ cosec θ)2 [CBSE 2001C]
Answer:
(i) LHS = (sin θ + cosec θ)2 + (cos θ + sec θ)2
= (sin2 θ + cosec2 θ + 2 sin θ cosec θ) + (cos2 θ + sec2 θ + 2 cos θ sec θ)
= (sin2 θ + cos2 θ) + (cosec2 θ + sec2 θ) + 2(sin θ cosec θ + cos θ sec θ)
= 1 + (1 + cot2 θ + 1 + tan2 θ) + 2(1 + 1)
= 3 + cot2 θ + tan2 θ + 4
[∵ sin θ cosec θ = 1 = cos θ sec θ]
= (3 + 4) + tan2 θ + cot2 θ
= 7 + tan2 θ + cot2 θ
= RHS
Hence Proved.

(ii) LHS = (sin θ + sec θ)2 + (cos θ + cosec θ)2
= (sin2 θ + sec2 θ + 2 sin θ sec θ) + (cos2 θ + cosec2 θ + 2 cos θ cosec θ)
= (sin2 θ + cos2 θ) + (sec2 θ + cosec2 θ) + 2 sin θ sec θ + 2 cos θ cosec θ
= 1 + (1 + tan2 θ + 1 + cot2 θ) + \(\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right)\)
= 1 + (tan2 θ + cot2 θ + 2 tan θ cot θ) + 2\(\left(\frac{\sin ^2 \theta+\cos ^2 \theta}{\sin \theta \cos \theta}\right)\)
= 1 + (tan θ + cot θ)2 + 2 cosec θ sec θ
= 1 + \(\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right)^2\) + 2 cosec θ sec θ
= 1 + sec2 θ cosec2 θ + 2 cosec θ sec θ
= (1 + sec θ cosec θ)2
= RHS
Hence proved

Question. 12.
If cos θ + sin θ = √2 cos θ, show that cos θ – sin θ = √2 sin θ.
Answer:
Given, cos θ + sin θ = √2 cos θ ……. (i)
Squaring both sides
cos2 θ + sin2 θ + 2 sin θ cos θ = 2 cos2 θ
⇒ cos2 θ – sin2 θ = 2 sin θ cos θ
⇒ (cos θ – sin θ) (cos θ + sin θ) = 2 sin θ cos θ
⇒ (cos θ – sin θ) (√2 cos θ) = 2 sin θ cos θ (Using (i))
⇒ cos θ – sin θ = \(\frac{2 \sin \theta \cos \theta}{\sqrt{2} \cos \theta}\)
⇒ cos θ – sin θ = √2 sin θ

Introduction to Trigonometry Class 10 Extra Questions Short Answer Type-2

Question 1
If 7 sin2 A + 3 cos2 A = 4, show that tan A = \(\frac{1}{\sqrt{3}}\). [CBSE Delhi 2016]
Answer:
7 sin2 A + 3 cos2 A = 4
Dividing both sides by cos2 A
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 9
⇒ 7 tan2 A + 3 = 4 sec2 A
⇒ 7 tan2 A + 3 = 4(1 + tan2A) [∵sec2θ = 1 + tan2 θ]
⇒ 7 tan2 A + 3 – 4(1 + tan2 A) = 0
⇒ 7 tan2 A + 3 – 4 – 4 tan2 A = 0
⇒ 3 tan2 A – 1 = 0
⇒ 3 tan2 A = 1
⇒ tan2 A = \(\frac{1}{3}\)
∴ tan A = \(\frac{1}{\sqrt{3}}\)
∴ Hence proved.

Question 2.
Prove (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A. [CBSE Delhi 2016]
Answer:
We take,
L.H.S. = (sin A + cosec A)2 + (cos A + sec A)2
= (sin2 A + cosec2 A + 2 sin A cosec A) + (cos2 A + sec2 A + 2 cos A sec A)
= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2 cos A sec A
= (sin2 A + cos2 A) + (cosec2 A + sec2 A) + 2 (sin A cosec A + cos A sec A)
= 1 + (1 + cot2 A + 1 + tan2 A) + 2(1 + 1)
= 3 + cot2 A + tan2 A + 4
[∵ sin θ cosec θ = 1
cos θ sec θ = 1]
= (3 + 4) + (cot2 A + tan2 A)
= 7 + tan2 A + cot2 A
∴ = R.H.S.
∴ Hence proved.

Question 3.
If sin θ + cos θ = √2, then evaluate tan θ + cot θ [CBSE Sample Paper-2017]
Answer:
sin θ + sos θ = √2
⇒ (sin θ + cos θ)2 = (√2)2
⇒ sin2 θ + cos2 θ + 2 sin θ cos θ = 2
⇒ 1 + 2 sin θ cos θ = 2
⇒ sin θ cos θ = \(\frac{1}{2}\) ………… (i)
we know, sin2 θ + cos2 θ = 1 ……………… (ii)
Dividing (ii) by (i) wet get
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 10
⇒ tan θ + cot θ = 2

Question 4.
If sec 3A = cosec (A – 10°) where 3A is an acute angle, find the value of A.
Answer:
sec 3A = cosec (A -10°)
sec 3A = sec {90° – (A – 10)}
[∵sec (90° – θ) = cosec θ]
⇒ sec 3A = sec (100° – A)
⇒ 3A = 100° – A
⇒ 3A + A = 100°
4A = 100°
A = \(\frac{100^{\circ}}{4}\) = 25°

Question 5.
Prove that:
sin A(1 + tan A) + cos A(1 + cot A) = sec A + cosec A [C.B.S.E. 2000 (F)]
Answer:
LHS = sin A (1 + tan A) + cos A (1 + cot A)
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 11

Question 6.
Evaluate
\(\frac{{cosec}^2 63^{\circ}+\tan ^2 24^{\circ}}{\cot ^2 66^{\circ}+\sec ^2 27^{\circ}}\) + \(\frac{\sin ^2 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ}+\sin 27^{\circ} \sec 63^{\circ}}{2\left({cosec}^2 65^{\circ}-\tan ^2 25^{\circ}\right)}\) [CBSE Sample Paper-2017]
Answer:
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 12

Question .7.
If cos2 θ – sin2 θ = tan2 Φ, prove that
cos Φ = \(\frac{1}{\sqrt{2} \cos \theta}\)
Answer:
Consider cos2 θ – sin2 θ = tan2 Φ
⇒ cos2 θ – (1 – cos2 θ) = sec2 Φ – 1
[∵ sin2 θ + cos2 θ = 1, sec2 Φ = 1 + tan2 Φ]
⇒ 2cos2 θ – 1 = sec2Φ – 1
⇒ 2 cos2 θ = sec2 Φ
Taking square root, we get
√2 cos θ = sec Φ
⇒ √2 cos θ = \(\frac{1}{\cos \phi}\)
⇒ cos Φ = \(\frac{1}{\sqrt{2} \cos \theta}\)

Question 8.
If tan 2A = cot (A -18°), where 2A is an acute angle, find the value of A. [CBSE 2018]
Answer:
We know that tan θ = cot (90 – θ)
∴ tan 2A = cot (A – 18°)
⇒ cot (90 – 2A) = cot (A – 18°)
⇒ 90° – 2A = A – 18°
⇒ 3A = 108°
A = 36°

Question 9.
Without using trigonometric tables, evaluate the following:
\(\frac{\sec 39^{\circ}}{{cosec} 51^{\circ}}+\frac{2}{\sqrt{3}}\) = tan 17° tan 38° tan 60° tan 52° tan 73° – 3 (sin2 31° + sin2 59°) [CBSE 2006(C)]
Answer:
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 13
= 1 + 2 (tan 17° cot 17°) (tan 38° cot 38°) – 3 × 1
= 1 + 2 × 1 × 1 – 3 = 3 – 3 = 0 [∵ tan θ cot θ = 1]

Question 10.
Prove that: a2 + b2 = x2 + y2 when a cos θ – b sin θ = x and a sin θ + b cos θ = y.
Answer:
RHS = x2 + y2
= [a cos θ – b sin θ]2 + [a sin θ + b cos θ]2
= a2 cos2 θ + b2 sin2 θ – 2ab sin θ cos θ + a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ
= a2 cos2 θ + b2 sin2 θ + a2 sin2 θ + b2 cos2 θ
= a2 [cos2 θ + sin2 θ] + b2 [sin2 θ + cos2 θ]
= a2[1] + b2[1] [ ∵ sin2 θ + cos2 θ = 1]
= a2 + b2
= LHS
Hence proved

Introduction to Trigonometry Class 10 Extra Questions Long Answer Type 1

Question 1.
If 3 tan A = 4, check whether = \(\frac{1-\tan ^2 A}{1+\tan ^2 A}\) = cos2A – sin2A or not? [CBSE Delhi 2016]
Answer:
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 14
Now, take R.H.S. = cos2 A – sin2 A
Firstly, we find the value of cos A and sin A.
By using Pythagoras Theorem.
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 15
(AC)2 = (AB)2 + (BC)2
⇒ (AC)2 = (3)2 + (4)2 = 9 + 16 = 25
AC = √25
∴ AC = 5
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 16
∴ cos2 A – sin2 A = \(\frac{-7}{25}\)
∴ Hence, L.H.S. = R.H.S.
Hence proved.

Question 2.
If x = a sin θ and y = b tan θ, then prove that \(\frac{a^2}{x^2}-\frac{b^2}{y^2}\) = 1.
Answer:
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 17

Question 3.
Prove that \(\frac{2}{\cos ^2 \theta}-\frac{1}{\cos ^4 \theta}-\frac{2}{\sin ^2 \theta}+\frac{1}{\sin ^4 \theta}\) = cot4 θ – tan4 θ
Answer:
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 18
= 2 sec2 θ – sec4 θ – 2 cosec2 θ + cosec4 θ
= 2(1 + tan2 θ) – (1 + tan2 θ)2 – 2(1 + cot2 θ) + (1 + cot2 θ)2
= (1 + tan2 θ) [2 – (1 + tan2 θ)] – (1 + cot2 θ) [2 – (1 + cot2 θ)]
= (1 + tan2 θ) (1 – tan2 θ) – (1 + cot2 θ) (1 – cot2 θ)
= 1 – tan4 θ – (1 – cot4 θ) = cot4 θ – tan4 θ
= RHS
Hence proved

Question 4.
Evaluate sec 41° sin 49° + cos 49° cosec 41° + \(\frac{2}{\sqrt{3}}\) = tan 20° tan 60° tan 70° – 3 (cos2 45° – sin2 90°).
Answer:
The given expression is
sec 41° sin 49° + cos 49° cosec 41° + \(\frac{2}{\sqrt{3}}\) tan 20° tan 60° tan 70° – 3 (cos2 45° – sin2 90°)
= sec 41° × sin (90° – 41°) + cos (90° – 41°) × cosec 41° + \(\frac{2}{\sqrt{3}}\) tan 20° × tan 70° × tan 60° – 3 (cos245° – (1)2)
= sec 41° × cos 41° + sin 41° × cosec 41°
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 19

Question 5.
Determine the value of x such that
2 cosec2 30° + x sin2 60° – \(\frac{3}{4}\) tan2 30° = 10.
Answer:
We have,
2 cosec22 30° + x sin2 60° – \(\frac{3}{4}\) tan2 30° = 10
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 20

Introduction to Trigonometry Class 10 Extra Questions HOTS

Question 1.
Show that cosec2 θ + sec2 θ can never be less than 2.
Answer:
Let, if possible, cosec2 θ + sec2 θ < 2
⇒ (1 + cot2 θ) + (1 + tan2 θ) < 2
⇒ cot2 θ + tan2 θ + 2 < 2
⇒ cot2 θ + tan2 θ < θ
But sum of squares of two real numbers is always non negative.
∴ cot2 θ + tan2 θ < 0 is not possible.
Therefore, our supposition is wrong.
Hence cosec2 θ + sec2 θ can never be less than 2.

Question 2.
If sin θ + sin2θ + sin3θ = 1, then find the value of cos6 θ – 4 cos4 θ + 8 cos2 θ.
Answer:
We have, sin θ + sin3 θ = 1- sin2 θ
⇒ sin θ (1 + sin2 θ) = cos2 θ
⇒ sin θ (2 – cos2 θ) = cos2 θ
Squaring both sides, we get
sin2 θ (2 – cos2 θ)2 = cos4 θ
⇒ (1 – cos2 θ) (4 + cos4 θ – 4 cos2 θ) = cos4 θ
⇒ 4 + cos4 θ – 4 cos2 θ – 4 cos2 θ – cos6 θ + 4 cos4 θ = cos4 θ
⇒ cos6 θ – 4 cos4 θ + 8 cos2 θ = 4.

Question 3.
If 7 sin2 θ + 3 cos2 0 = 4, then, show that tan θ = \(\frac{1}{\sqrt{3}}\), where θ is an acute angle.
Answer:
7 sin2 θ + 3 cos2 θ = 4
⇒ 7 sin2 θ + 3 cos2 θ = 4 × 1 = 4 × (sin2 θ + cos2 θ)
⇒ 3 sin2 θ = cos2 θ
Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 with Solutions 21

Question 4.
Prove that: 3 (sin θ – cos θ)4 + 6 (sin θ + cos θ)2 + 4 (sin6 θ + cos6 θ) = 13.
Answer:
(sin θ – cos θ)4
= [(sin θ – cos θ)2]2
= [sin2θ + cos2θ – 2 sin θ cos θ]2
= [1 – 2 sin θ cos θ]2
= 1 + 4 sin2θ cos2θ – 4 sin θ cos θ Also (sin θ + cos θ)2
= sin2 θ + cos2 θ + 2 sin θ cos θ and (sin6 θ + cos6 θ)
= (sin2θ)3 + (cos2θ)3
= (sin2θ + cos2θ) [(sin2θ)2 – sin2 θ cos2 θ + (cos2 θ)2]
= (1) [sin4 θ – sin2 θ cos2 θ + cos4 θ]
= [(sin2θ + cos2θ)2– 2 sin2 θ cos2 θ – sin2 θ cos2 θ]
= 1 – 3 sin2 θ cos2 θ
∴ LHS
= 3 (1 + 4 sin2 θ cos2 θ – 4 sin θ cos θ) + 6 (1 + 2 sin θ cos θ) + 4 (1 – 3 sin2 θ cos2 θ)
= 3 + 6 + 4 = 13
= RHS Hence proved

Introduction-To-Trigonometry-CBSE-Class-10-Maths-Extra-Questions-7
Introduction-To-Trigonometry-CBSE-Class-10-Maths-Extra-Questions-8

Introduction-To-Trigonometry-CBSE-Class-10-Maths-Extra-Questions-12

Introduction-To-Trigonometry-CBSE-Class-10-Maths-Extra-Questions-24

Extra Questions for Class 10 Maths

NCERT Solutions for Class 10 Maths

The post Introduction to Trigonometry Class 10 Extra Questions Maths Chapter 8 appeared first on Learn CBSE.


Viewing all articles
Browse latest Browse all 10164

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>