Quantcast
Channel: Learn CBSE
Viewing all articles
Browse latest Browse all 9061

NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.3

$
0
0

NCERT Solutions for Class 12th Maths Chapter 10 Vector Algebra Ex 10.3

Get Free NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.3 PDF in Hindi and English Medium. Sets Class 12 Maths NCERT Solutions are extremely helpful while doing your homework. Vector Algebra Exercise 10.3 Class 12 Maths NCERT Solutions were prepared by Experienced LearnCBSE.in Teachers. Detailed answers of all the questions in Chapter 10 Class 12 Vector Algebra Ex 10.3 provided in NCERT Textbook.

Free download NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.3 PDF in Hindi Medium as well as in English Medium for CBSE, Uttarakhand, Bihar, MP Board, Gujarat Board, BIE, Intermediate and UP Board students, who are using NCERT Books based on updated CBSE Syllabus for the session 2019-20.

NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.3

Ex 10.3 Class 12 Maths Question 1.
Find the angle between two vectors \overrightarrow { a } ,\overrightarrow { b } with magnitudes √3 and 2 respectively, and such that \overrightarrow { a } \cdot \overrightarrow { b } =\sqrt { 6 }
Solution:
Angle θ between two vectors \overrightarrow { a } ,\overrightarrow { b } ,
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 1

Ex 10.3 Class 12 Maths Question 2.
Find the angle between the vectors \hat { i } -2\hat { j } +3\hat { k } \quad and\quad 3\hat { i } -2\hat { j } +\hat { k }
Solution:
Let \overrightarrow { a } =\hat { i } -2\hat { j } +3\hat { k } \quad and\quad \overrightarrow { b } =3\hat { i } -2\hat { j } +\hat { k }
Let θ be the angle between \overrightarrow { a } ,\overrightarrow { b } ,
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 2

Ex 10.3 Class 12 Maths Question 3.
Find the projection of the vector \overrightarrow { i } -\overrightarrow { j } , on the line represented by the vector \overrightarrow { i } +\overrightarrow { j } ,
Solution:
let \overrightarrow { a } =\hat { i } -\hat { j } \quad and\quad \overrightarrow { b } =\hat { i } +\hat { j }
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 3

Ex 10.3 Class 12 Maths Question 4.
Find the projection of the vector \hat { i } +3\hat { j } +7\hat { k } on the vector 7\hat { i } -\hat { j } +8\hat { k }
Solution:
let \overrightarrow { a } =\hat { i } +3\hat { j } +7\hat { k } \quad and\quad \overrightarrow { b } =7\hat { i } -\hat { j } +8\hat { k } then
tiwari academy class 12 maths Chapter 10 Vector Algebra 4

Ex 10.3 Class 12 Maths Question 5.
Show that each of the given three vectors is a unit vector \frac { 1 }{ 7 } \left( 2\hat { i } +3\hat { j } +6\hat { k } \right) ,\frac { 1 }{ 7 } \left( 3\hat { i } -6\hat { j } +2\hat { k } \right) ,\frac { 1 }{ 7 } \left( 6\hat { i } +2\hat { j } -3\hat { k } \right) Also show that they are mutually perpendicular to each other.
Solution:
Let\quad \overrightarrow { a } =\frac { 1 }{ 7 } \left( 2\hat { i } +3\hat { j } +6\hat { k } \right) ,\overrightarrow { b } =\frac { 1 }{ 7 } \left( 3\hat { i } -6\hat { j } +2\hat { k } \right) ,\overrightarrow { c } =\frac { 1 }{ 7 } \left( 6\hat { i } +2\hat { j } -3\hat { k } \right)
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 5

Ex 10.3 Class 12 Maths Question 6.
Find\left| \overrightarrow { a } \right| and\left| \overrightarrow { b } \right| if\left( \overrightarrow { a } +\overrightarrow { b } \right) \cdot \left( \overrightarrow { a } -\overrightarrow { b } \right) =8\quad and\left| \overrightarrow { a } \right| =8\left| \overrightarrow { b } \right|
Solution:
Given \left( \overrightarrow { a } +\overrightarrow { b } \right) \cdot \left( \overrightarrow { a } -\overrightarrow { b } \right) =8
tiwari academy class 12 maths Chapter 10 Vector Algebra 6

Ex 10.3 Class 12 Maths Question 7.
Evaluate the product :
\left( 3\overrightarrow { a } -5\overrightarrow { b } \right) \cdot \left( 2\overrightarrow { a } +7\overrightarrow { b } \right)
Solution:
\left( 3\overrightarrow { a } -5\overrightarrow { b } \right) \cdot \left( 2\overrightarrow { a } +7\overrightarrow { b } \right)
=6\overrightarrow { a } .\overrightarrow { a } -10\overrightarrow { b } \overrightarrow { a } +21\overrightarrow { a } .\overrightarrow { b } -35\overrightarrow { b } .\overrightarrow { b }
=6{ \left| \overrightarrow { a } \right| }^{ 2 }-11\overrightarrow { a } \overrightarrow { b } -35{ \left| \overrightarrow { b } \right| }^{ 2 }

Ex 10.3 Class 12 Maths Question 8.
Find the magnitude of two vectors \overrightarrow { a } ,\overrightarrow { b } having the same magnitude and such that the angle between them is 60° and their scalar product is \frac { 1 }{ 2 }
Solution:
We know that \overrightarrow { a } .\overrightarrow { b } =\left| \overrightarrow { a } \right| \left| \overrightarrow { b } \right| cos\theta
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 8

Ex 10.3 Class 12 Maths Question 9.
Find \left| \overrightarrow { x } \right| , if for a unit vector \overrightarrow { a } ,(\overrightarrow { x } -\overrightarrow { a } )\cdot (\overrightarrow { x } +\overrightarrow { a } )=12
Solution:
Given
\overrightarrow { a } ,(\overrightarrow { x } -\overrightarrow { a } )\cdot (\overrightarrow { x } +\overrightarrow { a } )=12
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 9

Ex 10.3 Class 12 Maths Question 10.
If \overrightarrow { a } =2\hat { i } +2\hat { j } +3\hat { k } ,\overrightarrow { b } =-\hat { i } +2\hat { j } +\hat { k } and\overrightarrow { c } =3\hat { i } +\hat { j } such that \overrightarrow { a } +\lambda \overrightarrow { b } \bot \overrightarrow { c } , then find the value of λ.
Solution:
Given
\overrightarrow { a } =2\hat { i } +2\hat { j } +3\hat { k } ,\overrightarrow { b } =-\hat { i } +2\hat { j } +\hat { k } and\overrightarrow { c } =3\hat { i } +\hat { j }
tiwari academy class 12 maths Chapter 10 Vector Algebra 10

Ex 10.3 Class 12 Maths Question 11.
Show that \left| \overrightarrow { a } \right| \overrightarrow { b } +\left| \overrightarrow { b } \right| a\quad \bot \quad \left| \overrightarrow { a } \right| \cdot \overrightarrow { b } -\left| \overrightarrow { b } \right| a for any two non-zero vectors \overrightarrow { a } ,\overrightarrow { b }
Solution:
\overrightarrow { a } ,\overrightarrow { b } are any two non zero vectors
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 11

Ex 10.3 Class 12 Maths Question 12.
If \overrightarrow { a } \cdot \overrightarrow { a } =0\quad and\quad \overrightarrow { a } \cdot \overrightarrow { b } =0, then what can be concluded about the vector \overrightarrow { b } ?
Solution:
\overrightarrow { a } \overrightarrow { a } =0\quad and\quad \overrightarrow { a } .\overrightarrow { b } =0 ,
=> \overrightarrow { b } = 0
Hence b is any vector.

Ex 10.3 Class 12 Maths Question 13.
If \overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } are the unit vector such that \overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c } =0 , then find the value of \overrightarrow { a } .\overrightarrow { b } +\overrightarrow { b } .\overrightarrow { c } +\overrightarrow { c } .\overrightarrow { a }
Solution:
We have
\overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c } =0
tiwari academy class 12 maths Chapter 10 Vector Algebra 13

Ex 10.3 Class 12 Maths Question 14.
If either vector \overrightarrow { a } =0\quad or\quad \overrightarrow { b } =0 then \overrightarrow { a } .\overrightarrow { b } =0. But the converse need not be true. Justify your answer with an example.
Solution:
Given: \overrightarrow { a } =0\quad or\quad \overrightarrow { b } =0
To prove: \overrightarrow { a } .\overrightarrow { b } =0
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 14

Ex 10.3 Class 12 Maths Question 15.
If the vertices A,B,C of a triangle ABC are (1,2,3) (-1,0,0), (0,1,2) respectively, then find ∠ABC.
Solution:
Let O be the origin then.
\frac { 1 }{ 2 }
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 15
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 15.1

Ex 10.3 Class 12 Maths Question 16.
Show that the points A (1,2,7), B (2,6,3) and C (3,10, -1) are collinear.
Solution:
The position vectors of points A, B, C are
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 16

Ex 10.3 Class 12 Maths Question 17.
Show that the vectors 2\hat { i } -\hat { j } +\hat { k } ,\hat { i } -3\hat { j } -5\hat { k } and \left( 3\hat { i } -4\hat { j } -4\hat { k } \right) from the vertices of a right angled triangle.
Solution:
The position vectors of the points A, B and C are
2\hat { i } -\hat { j } +\hat { k } ,\hat { i } -3\hat { j } -5\hat { k } and \left( 3\hat { i } -4\hat { j } -4\hat { k } \right)
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 17
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 17.1

Ex 10.3 Class 12 Maths Question 18.
If \overrightarrow { a } is a non-zero vector of magnitude ‘a’ and λ is a non- zero scalar, then λ \overrightarrow { a } is unit vector if
(a) λ = 1
(b) λ = – 1
(c) a = |λ|
(d) a = \frac { 1 }{ \left| \lambda \right| }
Solution:
\left| \overrightarrow { a } \right| =a
Given : \lambda \overrightarrow { a } is a unit vectors
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 18

NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Hindi Medium Ex 10.3

NCERT Solutions for Class 12 Maths Exercise 10.3 of Vector Algebra
NCERT Solutions for Class 12 Maths Exercise 10.3
12 Maths Exercise 10.3
12 Maths Exercise 10.3 solutions
12 Maths Exercise 10.3 all answers
12 Maths Exercise 10.3 in English Medium
12 Maths Exercise 10.3 in Hindi Medium
Class 12 Maths Exercise 10.3 in Hindi medium
Class 12 Maths Exercise 10.3 for 2019-20
Class 12 Maths Exercise 10.3 updated

HC Verma Concepts of Physics NCERT Solutions Homepage RD Sharma Solutions

The post NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.3 appeared first on Learn CBSE.


Viewing all articles
Browse latest Browse all 9061

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>