Quantcast
Channel: Learn CBSE
Viewing all articles
Browse latest Browse all 9061

NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4

$
0
0

NCERT Solutions for Class 12th Maths Chapter 10 Vector Algebra Ex 10.4

Get Free NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 PDF in Hindi and English Medium. Sets Class 12 Maths NCERT Solutions are extremely helpful while doing your homework. Vector Algebra Exercise 10.4 Class 12 Maths NCERT Solutions were prepared by Experienced LearnCBSE.in Teachers. Detailed answers of all the questions in Chapter 10 Class 12 Vector Algebra Ex 10.4 provided in NCERT Textbook.

Free download NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 PDF in Hindi Medium as well as in English Medium for CBSE, Uttarakhand, Bihar, MP Board, Gujarat Board, BIE, Intermediate and UP Board students, who are using NCERT Books based on updated CBSE Syllabus for the session 2019-20.

NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4

Ex 10.4 Class 12 Maths Question 1.
Find \left| \overrightarrow { a } \times \overrightarrow { b } \right| ,if\quad \overrightarrow { a } =\hat { i } -7\hat { j } +7\hat { k } \quad and\quad \overrightarrow { b } =3\hat { i } -2\hat { j } +2\hat { k }
Solution:
Given
\overrightarrow { a } =\hat { i } -7\hat { j } +7\hat { k } \quad and\quad \overrightarrow { b } =3\hat { i } -2\hat { j } +2\hat { k }
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 1

NCERT Maths Class 12 Chapter 10

Ex 10.4 Class 12 Maths Question 2.
Find a unit vector perpendicular to each of the vector \overrightarrow { a } +\overrightarrow { b } \quad and\quad \overrightarrow { a } -\overrightarrow { b } , where \overrightarrow { a } =3\hat { i } +2\hat { j } +2\hat { k } \quad and\quad \overrightarrow { b } =\hat { i } +2\hat { j } -2\hat { k }
Solution:
we have
\overrightarrow { a } =3\hat { i } +2\hat { j } +2\hat { k } \quad and\quad \overrightarrow { b } =\hat { i } +2\hat { j } -2\hat { k }
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 2
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 2.1

Ex 10.4 Class 12 Maths Question 3.
If a unit vector \overrightarrow { a } makes angle \frac { \pi }{ 3 } with\quad \hat { i } ,\frac { \pi }{ 4 } with\quad \hat { j } and an acute angle θ with \overrightarrow { k } ,then find θ and hence the components of \overrightarrow { a } .
Solution:
Let\quad \overrightarrow { a } ={ a }_{ 1 }\hat { i } +{ a }_{ 2 }\hat { j } +{ a }_{ 3 }\hat { k } such\quad that\quad \left| \overrightarrow { a } \right| =1
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 3

Ex 10.4 Class 12 Maths Question 4.
Show that \left( \overrightarrow { a } -\overrightarrow { b } \right) \times \left( \overrightarrow { a } +\overrightarrow { b } \right) =2\left( \overrightarrow { a } \times \overrightarrow { b } \right)
Solution:
LHS = \left( \overrightarrow { a } -\overrightarrow { b } \right) \times \left( \overrightarrow { a } +\overrightarrow { b } \right)
vedantu class 12 maths Chapter 10 Vector Algebra 4

Ex 10.4 Class 12 Maths Question 5.
Find λ and μ if
\left( 2\hat { i } +6\hat { j } +27\hat { k } \right) \times \left( \hat { i } +\lambda \hat { j } +\mu \hat { k } \right) =0
Solution:
\left( 2\hat { i } +6\hat { j } +27\hat { k } \right) \times \left( \hat { i } +\lambda \hat { j } +\mu \hat { k } \right) =0
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 5

Ex 10.4 Class 12 Maths Question 6.
Given that \overrightarrow { a } .\overrightarrow { b } =0\quad and\quad \overrightarrow { a } \times \overrightarrow { b } =0. What can you conclude about the vectors \overrightarrow { a } ,\overrightarrow { b } ?
Solution:
\overrightarrow { a } .\overrightarrow { b } =0\quad and\quad \overrightarrow { a } \times \overrightarrow { b } =0
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 6

Ex 10.4 Class 12 Maths Question 7.
Let the vectors \overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } are given { a }_{ 1 }\hat { i } +{ a }_{ 2 }\hat { j } +{ a }_{ 3 }\hat { k } ,{ b }_{ 1 }\hat { i } +{ b }_{ 2 }\hat { j } +{ b }_{ 3 }\hat { k } ,{ c }_{ 1 }\hat { i } +{ c }_{ 2 }\hat { j } +{ c }_{ 3 }\hat { k } . Then show that \overrightarrow { a } \times \left( \overrightarrow { b } +\overrightarrow { c } \right) =\overrightarrow { a } \times \overrightarrow { b } +\overrightarrow { a } \times \overrightarrow { c }
Solution:
Given
\overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } are given { a }_{ 1 }\hat { i } +{ a }_{ 2 }\hat { j } +{ a }_{ 3 }\hat { k } ,{ b }_{ 1 }\hat { i } +{ b }_{ 2 }\hat { j } +{ b }_{ 3 }\hat { k } ,{ c }_{ 1 }\hat { i } +{ c }_{ 2 }\hat { j } +{ c }_{ 3 }\hat { k }
vedantu class 12 maths Chapter 10 Vector Algebra 7
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 7.1

Ex 10.4 Class 12 Maths Question 8.
If either \overrightarrow { a } =0\quad or\quad \overrightarrow { b } =0\quad then\quad \hat { a } \times \hat { b } =0.Is the
converse true? Justify your answer with an example.
Solution:
\overrightarrow { a } =0\Rightarrow \left| \overrightarrow { a } \right| =0
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 8

Ex 10.4 Class 12 Maths Question 9.
Find the area of the triangle with vertices A (1,1,2), B (2,3,5) and C (1,5,5).
Solution:
A (1,1,2), B (2,3,5) and C (1,5,5).
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 9
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 9.1

Ex 10.4 Class 12 Maths Question 10.
Find the area of the parallelogram whose adjacent sides are determined by the vectors \overrightarrow { a } =\hat { i } -\hat { j } +3\hat { k } ,\overrightarrow { b } =2\hat { i } -7\hat { j } +\hat { k }
Solution:
We have \overrightarrow { a } =\hat { i } -\hat { j } +3\hat { k } ,\overrightarrow { b } =2\hat { i } -7\hat { j } +\hat { k }
vedantu class 12 maths Chapter 10 Vector Algebra 10

Ex 10.4 Class 12 Maths Question 11.
Let the vectors\overrightarrow { a } ,\overrightarrow { b } such that \left| \overrightarrow { a } \right| =3,\left| \overrightarrow { b } \right| =\frac { \sqrt { 2 } }{ 3 } then \overrightarrow { a } \times \overrightarrow { b } is a unit vector if the angle between \overrightarrow { a } ,\overrightarrow { b } is
(a) \frac { \pi }{ 6 }
(b) \frac { \pi }{ 4 }
(c) \frac { \pi }{ 3 }
(d) \frac { \pi }{ 2 }
Solution:
Given
\left| \overrightarrow { a } \times \overrightarrow { b } \right| =1
\left| \overrightarrow { a } \right| =3,\left| \overrightarrow { b } \right| =\frac { \sqrt { 2 } }{ 3 }
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 11

Ex 10.4 Class 12 Maths Question 12.
Area of a rectangles having vertices
A\left( -\hat { i } +\frac { 1 }{ 2 } \hat { j } +4\hat { k } \right) ,B\left( \hat { i } +\frac { 1 }{ 2 } \hat { j } +4\hat { k } \right) ,
C\left( \hat { i } -\frac { 1 }{ 2 } \hat { j } +4\hat { k } \right) ,D\left( -\hat { i } -\frac { 1 }{ 2 } \hat { j } +4\hat { k } \right) ,
(a) \frac { 1 }{ 2 } sq units
(b) 1sq.units
(c) 2sq.units
(d) 4sq.units
Solution:
\overrightarrow { OA } =\left( -\hat { i } +\frac { 1 }{ 2 } \hat { j } +4\hat { k } \right)
\overrightarrow { OB } =\left( \hat { i } +\frac { 1 }{ 2 } \hat { j } +4\hat { k } \right)
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 12

NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Hindi Medium Ex 10.4

NCERT Solutions for Class 12 Maths Exercise 10.4 of Vector Algebra
NCERT Solutions for Class 12 Maths Exercise 10.4 of Vector Algebra in PDF
NCERT Solutions for Class 12 Maths Exercise 10.4
NCERT Solutions for Class 12 Maths Exercise 10.4 in PDF
NCERT Solutions for Class 12 Maths Exercise 10.4 for up board
NCERT Solutions for Class 12 Maths Exercise 10.4 in Hindi medium
NCERT Solutions for Class 12 Maths Exercise 10.4 for 2019-20

HC Verma Concepts of Physics NCERT Solutions Homepage RD Sharma Solutions

The post NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 appeared first on Learn CBSE.


Viewing all articles
Browse latest Browse all 9061

Trending Articles